
Partial Solution Set, Leon §5.3

5.3.1 Find least-squares solutions:

(a)

x1 + x2 = 3

2x1 − 3x2 = 2

0x1 + 0x2 = 1

Solution: We are trying to solve Ax = b, where A =

 1 1
2 −3
0 0

 and b = (3, 1, 2)T .

Clearly b 6∈ CS(A). So we use the normal equation, AT Ax = ATb, which becomes[
5 −5

−5 10

]
x =

[
5
0

]
.

The solution (unique, since A has rank 2) is x̂ = (2, 1)T .

(c)

x1 + x2 + x3 = 4

−x1 + x2 + x3 = 0

−x2 + x3 = 1

x1 + x3 = 2

Solution: The matrix equation is
1 1 1

−1 1 1
0 −1 1
1 0 1

 x =


4
0
1
2

 ,

which is inconsistent. The normal equations lead to the matrix equation, 3 0 1
0 3 1
1 1 4

 x =

 6
3
7

 ,

so the solution is x̂ = (1.6, 0.6, 1.2)T .



5.3.2 For each solution x̂ in exercise 5.4.1,

1. Determine p = Ax̂.

2. Calculate r(x̂).

3. Verify that r(x̂) ∈ N(AT ).

For item (c) in 5.3.1, we have

p = Ax̂ =


1 1 1

−1 1 1
0 −1 1
1 0 1


 1.6

0.6
1.2

 =


3.4
0.2
0.6
2.8

 , so r(x̂) =


0.6

−0.2
0.4

−0.8

 .

We easily verify that

AT r(x̂) =

 1 −1 0 1
1 1 −1 0
1 1 1 1




0.6
−0.2

0.4
−0.8

 =

 0
0
0

 .

5.3.3a Find all least squares solutions to Ax = b, where A =

 1 2
2 4

−1 −2

 and b = (3, 2, 1)T .

Solution: First note that the columns of A are linearly dependent, so A (and hence
AT A) has a nontrivial nullspace and we anticipate multiple solutions. Solving

[
6 12

12 24

]
x =

[
6

12

]
,

we find that all solutions have the form

x =

[
1
0

]
+ s

[
−2

1

]
.

5.3.4a For the system in Exercise 3, we want the projection p of b onto R(A), and the
verification that b− p is orthogonal to each of the columns of A.

Solution: Continuing with the previous problem, the projection is

p = A

[
1
0

]
=

 1
2

−1

 .

It follows that b− p = (2, 0, 2)T , clearly orthogonal to the columns of A.
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5.3.5a Find the best least-squares fit by a linear function to the given data:

x −1 0 1 2
y 0 1 3 9

.

Solution: We are assuming that y = mx + b, where m and b are the unknowns. Under
this assumption, we have a system of equations,

0 = −m + b

1 = b

3 = m + b

9 = 2m + b,

and the corresponding matrix equation is


−1 1

0 1
1 1
2 1


[

m
b

]
=


0
1
3
9

 .

The normal equations become [
6 2
2 4

] [
m
b

]
=

[
21
13

]
.

The solution: m = 2.9, b = 1.8, and so the function is y = 2.9x + 1.8.

5.3.6 Repeat problem 5.4.5a, but this time fit a quadratic polynomial to the data.

Solution: We now assume that p(x) = ax2 + bx+ c, where the coefficients are unknown.
This leads to the equations,

p(−1) = a− b + c = 0
p(0) = c = 1
p(1) = a + b + c = 3
p(2) = 4a + 2b + c = 9

.

The corresponding (and inconsistent) matrix equation is


1 −1 1
1 0 0
1 1 1
1 2 4


 c

b
a

 =


0
1
3
9

 .
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The normal equations become 4 2 6
2 6 8
6 8 18


 c

b
a

 =

 13
21
39

 .

After elimination, we use back-substitution to find a = 1.25, b = 1.65, and c = 0.55, so
p(x) = 1.25x2 + 1.65x + 0.55.

5.3.9a Let A be an m × n matrix of rank n, and let P = A(AT A)−1AT . Show that Pb = b
for every b ∈ CS(A).

Proof: Let b ∈ CS(A). Then b = Ax for some x ∈ Rn. It follows that

Pb = A(AT A)−1ATb

= A(AT A)−1AT (Ax)

= A(AT A)−1(AT A)x

= Ax

= b,

which is what we needed to show. 2

(Intuitively, the projection of b ∈ CS(A) onto CS(A) must be b itself.)

MA/Ra, November 3, 2004
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